
ASK_Palette Manual

08/09/23

Bearboat Software 

ASK_Palette Overview

History

ASK_Palette is an application that is a descendant of an older program
KM_GridPalettes. KM_GridPalettes is a program that allows a user to
create 2D grids of buttons that can be used to initiate Keyboard Maestro
macros. This tool was developed to supplement or be an alternative to the
built-in palettes that already exist in Keyboard Maestro.

This newer program has additional functionality although it is very similar
in concept to KM_GridPalettes. The letters in the name (ASK) refer to:

1. A - AppleScript
2. S - Shortcuts
3. K - Keyboard Maestro
It is now possible to initiate an AppleScript or a Shortcut directly from the

buttons of a palette without going through any intermediate steps in
Keyboard Maestro. The original functionality of launching a Keyboard
Maestro script remains and, for most people, likely will remain a primary
use of the program. Indeed, it is possible to use Keyboard Maestro itself
to launch an AppleScript or a Shortcut. My personal experience with
AppleScript and Shortcuts is limited so if you have problems directly
launching either from ASK_Palette, you might try using the Keyboard
Maestro mechanism. Using Keyboard Maestro offers flexibility dealing
with nagging details such as directing actions to the correct program. A
major and important feature of Keyboard Maestro is that there is an action
to bring the previous application to the fore. This is often necessary
because clicking on the ASK_Palette program itself has the side effect of
making it the foremost application.

A fourth task that can also be directly accessed through the buttons is to
change palettes within the ASK_Palette application itself. It is easy to
design a palette that contains a button to bring to the fore another palette.
And if appropriate, that palette can have a button on it that returns the
original one.

I originally primarily used Keyboard Maestro to write macro’s that
allowed me to complete complex tasks commonly involving multiple
applications. These tasks were characterized by multiple steps performed
repetitively. Interspersed in these steps were points that human
intervention/decisions were required. The macros would stop at these times
and the actions requiring a human would be done manually and then
another macro would be launched, perhaps one among many, to march
through a bunch of steps to get to the next decision point.

It was my habit to use hot-keys to launch these various macros. One
problem I had was forgetting the appropriate hot-keys. My sessions were
rather intensive, but I would go for weeks or months between having to
engage again. Then I would have to reteach myself all the required
keyboard shortcuts. ASK_Palette has a number of features that help the
user remember what the purpose of a palette or a button on the palette is.

I became intrigued by the Elgato Stream Decks. They seemed like a
clever way to approach the problem. The macros could be started by
pushing labeled buttons. But I was reluctant to complicate my life with more
hardware. I had more screen space than desktop space, and I thought that
I would try developing a program that would display a grid of buttons on the
screen that could be used as you might a hardware Elgato Stream Desk.

Picture

of Elgata Stream Deck from website.

Keyboard Maestro itself has various palettes built-in. Under some
circumstances their functionality might be superior to what is offered by
ASK_Palette. But there are other situations where I find ASK_Palette to
be easier and more intuitive to use. Keyboard Maestro palettes are linear
lists of triggers. ASK_Palette presents a 2D grid of triggers. Each has a
place. I generally prefer to use ASK_Palette.

Description

ASK_Palette allows the user to design up to 100 different palettes each
consisting of a grid of buttons. An individual palette can contain as many as
100 buttons. Each button can invoke a separate Keyboard Maestro action
or an AppleScript or a Shortcut. Some examples are collected below.

Mockup of an Elagato Setup used by David Sparks in his Field Guide to Keyboard Maestro.

Above 4 by 4 grid of buttons using emoji for the button graphics

Below 4 by 4 grid with hint revealed in information b

Simple Inverted T distribution of button

Single row of buttons 

Graphic variety in button picture design 

Initial grid of buttons: Design starts here.

The usually yellow bar at the inferior margin of the palette is the
information bar. I say “usually yellow” because it will change to red when
the cursor overlies an AppleScript button or blue when overlying a Shortcut
button or purple when overlying a Palette Switcher. The cursor is overlying
the fourth button in the third row. Since the numbering always starts with
zero, this is overlying button 23. That is displayed in the left part of the
information bar, just to the right of the palette ID which is at the extreme left
of the information bar. The middle of the information bar displays Beautiful
which is the Tip that the user created for this button. The right side of the
information bar shows the keyboard shortcut associated with the button 23
(lowercase l). During the palette design, the user decided not to display the
shortcut on the button. The button above with the giraffe has its keyboard
shortcut (lowercase h) actually displayed on the graphic. The window title is
chosen by the user, in this case it is Emoji Animal. 

ASK_Palette is a simple application with its own main window that can
be transformed one of a multitude of palettes as seen above. It is easy to
move from one palette to another. Each palette has a unique identify
specified as P00, P01, P02, …, P99.

Link to Keyboard Maestro

The mechanism by which ASK_Palette links to Keyboard Maestro is
via an AppleScript that is imbedded in the program. When any button is
clicked, the unique identifying information of the individual button is passed
to Keyboard Maestro by the AppleScript. Each palette should be paired to
a Keyboard Maestro macro that shares the same unique name (P00 or
P01 or P02 etc.) if its buttons are to successfully launch Keyboard
Maestro actions.

It is very common for the first action of the macro be Activate Last
Application. After you click on a button in ASK_Palette it becomes the
foremost application, so if you want to return to the application that you
were working with, you need to provide this action.

The next page show the basic structure of the Keyboard Maestro
macro that I use most frequently. The initial action is Set variable which
assigns the %TriggerValue% (information about which button pushed) that
is passed by the AppleScript to a variable. In this case, I have called that
variable whichButton. This holds the basic information of which button was
pressed. The next step is a Switch action which essentially determines
which actions are going to be fired off by the particular button identified by
that variable.

When a each button is only going to activate a couple of actions, this
works well.

Another common structure for a macro is shown on the next page. This
might be more suitable if each button in the palette is trying to launch a
large sequence of actions. In such a case, having all the actions of all the
buttons in the Switch action could create a very long unwieldy macro.

It starts the same way as the earlier example, assigning the button
information to a variable and then making a Switch action. But then each
item in the Switch action is just another macro. The action Execute a Macro
enables this.

 

It makes sense to place all the macros (P00, P01, P02 etc.) in a Group
called something like My Palettes. That Macro Group should be Available
in all applications. It is an implementation detail, but actually it is an
AppleScript that ultimately fires off the Keyboard Maestro macro.

If there is no Keyboard Maestro macro for a given palette, then nothing
happens. The application cannot detect that the operation has failed. It
passes the information to the embedded AppleScript and considers that the
end of its responsibility.

When you are in the debugging phase and clicking a button is some
palette fails to do anything, you have to be sure

1. The Keyboard Maestro engine is running
2. A macro exists that has the same name as the palette
3. That macro has a path to some actions for the particular button that
has been clicked

4. If that macro is in a Macro Group, it cannot have it availability
restricted to just ASK_Palette. Make that Macro Group Available in all
applications.

If you have 5 palettes in your ASK_Palette, you should have at least 5
Keyboard Maestro macros to deal with their output of those Palettes.

Link to AppleScript or Shortcuts

AppleScript is a scripting language created by Apple Inc. that facilitates
automated control over scriptable Mac applications. Shortcuts is a recently
created application on the Mac (2022) that lets you create your own
shortcuts with multiple steps. When designing a palette, a button can be
assigned to launch an AppleScript or a Shortcut simply by providing the
button the name of the AppleScript or the individual Shortcut. If such a
name is provided, this will override launching a Keyboard Maestro
macros. All the AppleScripts that are addressed by the application need be
stored in a single specified folder. The individual shortcuts are all stored
within the Shortcuts application. The predecessor of ASK_Palette,

KM_GridPalettes, only allowed initiation of Keyboard Maestro macros. Of
course, Keyboard Maestro macros themselves can launch AppleScripts or
Shortcuts. But ASK_Palette can easily be configured so buttons directly
launch AppleScripts or Shortcuts.

Palette Switching

A button on a palette can also be assigned the simple task of changing
to another palette. In some of my use cases, I have reason to go back and
forth between two palettes and this facilitates this. It is very easy to set up.
In earlier versions it was possible to use Keyboard Maestro itself to
manipulate ASK_Palette to change the palette, but having this functionality
built in, is just simpler. However, if there is some complicated button-
activated macro that among other tasks wants to change the palette this
can be done because it is easy to work on ASK_Palette itself with a
Keyboard Maestro macro.

ASK_Palette Functionality

You can consider the functionality of ASK_Palette to be divided into two
distinct areas.

1. Design of the palettes.
2. Use of the palettes.
The design part of the program is accessed through the menu

Configure

The ASK_Palette menubar

Normally, when initially setting up your copy of ASK_Palette you would
spend your time here designing your palettes. Whenever you wanted to
create a new palette, you would return to this menu with its various menu
items.

The menu Palette provides the basic functionality that allows you to
change which palette that you want to use at any given time. Once your
palettes have been designed, this is the only menu that you would
frequently need to be using.

The menu Misc can be used to provide Help information about the
program while in use.

Quitting the program is done simply by clicking on the red close window
button or the Quit ASK_Palette menu item under the menu ASK_Palette. 

Configuring Your Palettes

New Palette…

This is a menu item under the Configure menu that allows you to initiate

the process to create a new palette. This is the first step in the building of a
palette. A new 100 button palette appears. You get a chance to specify a
human-friendly name for the new palette. The user is expected to now go
to the Configure menu begin the process of specifying the palette.

The Configure menu items provide that actions that allow a palette to
be designed and made functional. Under the Configure menu there are six
menu items: Grid Construct, Button Pictures, Manage AppleScript, New
Palette…, Rename Palette Alias…, and Delete Palette….

Now that a new palette exists, open up Grid Construct. 

Grid Construct

This is the window that appears when selecting the Grid Construct menu

item.
 

Global Palette Specification

Here is where the major design of the palette takes place. Commonly,
the first decision is how many buttons are required. Click on the up/down
control to specify how many rows and how many columns are needed.
Once that has been done, decide whether in general you want the buttons
to have keyboard shortcuts. With keyboard shortcuts, the user can simply
type a letter when the ASK_Palette is the foremost application to activate
any specific button. There are 52 shortcut characters available (a-z and A-
Z). The shortcut can be made visible on the button to help the user
remember their existence.

In the Palette Specification part of the window, you set up the default
pattern of the use of keyboard shortcuts. Later, you can override these
defaults for any given button. So you might decide that all the buttons are
assigned a keyboard shortcut, but subsequently the shortcut can be
removed from a given button etc.

Button keyboard shortcuts can be useful under a number of
circumstances. Commonly, the user simply wants to be able to hit a
keyboard key instead of having to use the mouse. There are other potential
reasons to want keyboard shortcuts. ASK_Palette, it should be realized, is
an application like any other on your Mac. Therefore, it can be accessed by
Keyboard Maestro. There are situations in which it can be useful to be
able to include commands in a Keyboard Maestro macro that make
ASK_Palette foremost then invoke the action of any button on that palette
by having Keyboard Maestro simply type the appropriate keystroke.

If you are using button keyboard shortcuts, it often makes sense to
conclude each Keyboard Maestro macro with a step that makes
ASK_Palette the foremost application so that the user can simply tap on a
letter on the keyboard to invoke the next action of ASK_Palette .

The fact that ASK_Palette is an application like any other means that it
is possible to do various clever tricks. A Keyboard Maestro script can, for
example, change the current palette of ASK_Palette by calling the
appropriate menu item of ASK_Palette, It a specific button has a shortcut,
then a Keyboard Maestro script could conceivably switch the palette and
activate a specific button on that new palette. Care would have to be taken
to assure that the first script was complete before the next one started. You
do not want to end up with logical spaghetti.

In the Palette Specification part of the window (the upper ⅓), you can
also provide a Window Title for the palette. That may or may not be the
same as the Name/Alias that you earlier created. It is up to you.

Finally, free text can be entered or pasted into the Palette Particulars
text area. If you use a particular palette infrequently and your memory is
imperfect, it can be useful to write a description of the palette and its
purpose and anything else you want to remember. The information here
can subsequently be accessed for reference under the Menu Item Misc >>
Palette Particulars when this particular palette is in use. 

Button Specification

 There is a grid in the lower left part of the window which is an abstract
representation of the grid of buttons that you are creating for your palette.

On each grid cell a representation of its properties is seen. Does it invoke
Keyboard Maestro (KM) or Shortcut (SC) or AppleScript (AS) or Switch
Palette (PS)? The keyboard shortcut associated with the button is in the
right upper corner,. The button ID in the center. And, on the bottom, is there
a tip and/or information associated with that particular button?  

In this example, the user has chosen to make a palette with 2 rows and
7 columns. The grid displays most of the properties associated with the
individual buttons. When you click on an individual grid cell, it highlights. In
the right lower part of the window, the properties of that individual button
are visible in greater detail and can be modified. The 01 grid cell has been
highlighted.

The button, 01, has been highlighted

These are the properties associated with the 01 button of the palette.

Button Visibility

It is possible to make a given button invisible. This is for design
purposes. In the final palette, such buttons have no function and are not
seen — there is just a blank space. Some of the examples of palettes show
such blank areas within a palette. In the example below, the button to the
right of the Owl has been made invisible; this means that it shows up in the
palette as a bland gray area and is impervious to clicks. When you uncheck
the Button Visible, the selection grid will show that button in a light blue
color.

Keyboard Shortcut

You can individually choose the shortcut that you want to connect with
any button. Obviously, two buttons cannot share the same shortcut. If you
chose a shortcut for a button that is already assigned to another button,
that button will loose it shortcut and that character will be assigned to the
button currently being edited.

The up/down control will allow you to select any alphabetic character. If
you click on the down button, you will see “a” as the first available
character. Subsequent clicks move you down the alphabet. To make
reaching a distant character less onerous, you can hold the Shift key down
while clicking and move more quickly through the alphabet. Lowercase is
seen before the uppercase characters.

The second decision about shortcuts is whether you want them to be
visible in the corner of their button. In the example palette above, you can
see that some of the buttons have been configured to have their shortcut
visible. It is seen as a small orange letter in the right lower corner of the
button.

This example also shows the utility of the information bar that is seen
usually in yellow at the bottom of the palette. This always shows
information about the button over which the cursor lies. On the left side of
the information bar, you can see the palette ID (here P04) and the button
underneath the cursor (here 01). Remember that the button in the left
upper corner is 00. (Clicking on the information bar itself with the Shift-key
held down will show some help information about that UI element.)

On the right side of the information bar, you can see the shortcut for the
button underneath the cursor. In this case, that shortcut b is not actually
visible on the button itself. But the information bar can serve to remind the
user of the shortcut even if, by design, the user decided not to show the
shortcut over the button itself.

This example also serves to show a design option. By clever assignment
of pictures to the individual buttons of the top row, they have been selected
to meld into what looks like a single picture. But actually “underneath” the
picture the identity of the three distinct buttons is preserved. 

 

The cursor is over the middle button of the first row (01) and that button has the shortcut b as seen on the

right of the information bar. 

Tip and Info

It is possible to assign a Tip to any individual button. The text of the Tip
will show up in the middle of the information bar when the cursor is over the
button. This can help remind the user of the function of any given button if
there is concern that the graphic of the button might be a little too abstract.

In rare cases where you might need more room to explain (remind) the
user of the functionality of button, you can write a paragraph in the Info
area. The user can access any information that might have been entered
here while using the program by Option-clicking on the individual button.
With the Option key held down, a click brings up a small explanatory
window rather than actually activating the clicked button.

This is shown in the example below. Here the user has Option-clicked
on the button with the picture of the owl. A window with explanatory text has
appeared. Also notice that during configuration, the word “Owl” was entered
as a Tip and that is visible in the middle of the information bar. 
 

In the next example below, again the Tip data is revealed information
bar. The cursor is over the functioning button 01 and this is the palette P03.
This is all visible on the left side of the information bar. This button has
been assigned the shortcut u. Although that does not actually appear on
the graphic itself, it does appear in the information bar. The Tip (Up) has
been assigned to the button 01 and this is also revealed in the information
bar.

Clicking on the button under the cursor will activate the P03 Keyboard
Maestro macro and the button ID, 01, will be passed as a parameter.

 
 

Apple Script and Shortcuts

Most commonly the buttons in ASK_Palette are used to launch
Keyboard Maestro macros. In that situation, the KM checkbox should be
checked. Uncheck that checkbox to allow alternative actions. If text
information is provided in the AppleScript text area or the Shortcuts text
area, then when the user clicks on that button, rather than launching a
Keyboard Maestro macro, an AppleScript or a Shortcut will be activated.

That text information is the name of the AppleScript or the name of the
Shortcut. Text can only be entered in one of these two areas.

If there is no corresponding AppleScript of Shortcut present, a warning
will appear. This issue need not be addressed here immediately. You can
write the AppleScript or the Shortcut at a later time. Obviously, if you never
attend to this issue, this button will not work because there will be no
AppleScript or Shortcut to activate.

Palette Switch

A button can be assigned the simple task of changing to another palette.
This other palette is specified by its simple name (P00, P12, etc)

Auto Minimize

This is an advanced feature which only rarely will be of any use. The
default option is Never and that is what should normally be the setting. Auto
Minimize refers to minimizing the ASK_Palette application to the Dock.
This is equivalent to manually clicking on the yellow button in the left upper
corner of the palette window.

It is possible to have the application minimize itself to the dock so many
seconds after a button is pressed. This can be set to occur 2 seconds, 10
seconds or 50 seconds after the button is clicked. I have used this feature
occasionally. Unless you are enamored of this possibility in some workflow,
I would not bother with it. 

Button Pictures

ASK_Palette will work without any pictures being assigned to the

individual buttons, but it is not ideal. Pictures make using the palette more
pleasant in that appropriate pictures make the purpose of each button clear
at a glance. They do require some work to create; work that need only be
done once. PNG or JPG pictures are accepted. Any graphic program can
be used to design the pictures.

A button picture should be 64 by 64 points in size. It makes sense to
create a 64 by 64 template in whatever program you prefer that you can
use as the starting point for each picture. I happen to primarily use
AffinityDesign. Most of my pictures are created with a gray 1 pixel border
along the right and bottom edge. Below is my template. I can paste or draw
my picture on this template and easily prepare a Button Picture. The gray
lines act to visually differentiate the different buttons on the palette.

Data for the program, and that includes the pictures, have to be stored
someplace on your computer. This program shores this data in the
application support folder for the program. The full path to this folder is:

/Users/UserName/Library/Application Support/net.bearboat.ASK-Palette/
A subfolder of the Application Support folder is ButtonPictures and all

the Button Pictures need to end up in subfolders of this folder. Each
subfolder is named for its palette (P00, P01, P02 etc.) Each button picture
starts with the two digits that identify its button. Any text after the first two
characters can be whatever you find convenient and memorable.

Let’s say that the picture for the sixth button of the fourth palette is an
image of a grasshopper. Remember that all the numbering starts with zero.
The name of this picture has to start with 05. Let’s call it 05Grasshopper.
So the correct location for this button, 05Grasshopper, would be in the
folder P03 in the folder ButtonPictures. The complete path:

/Users/UserName/Library/Application Support/net.bearboat.ASK-Palette/
ButtonPictures/P03/05Grasshopper

There is nothing that prevents a savvy Mac user from placing these
pictures in the correct location by hand. But Apple discourages people from
mucking around in the Library folder and its subfolders. You can
inadvertently stomp on things that will cause you trouble. So ASK_Palette
includes functionality that helps manage the placement and labeling of
button pictures that you create.

When you go to the menu item, Button Pictures, under the Configure
menu, the window below appears.

The Window information is linked to the current palette. The current
palette is P11 which also goes by the name AudioVisual. On the left side is
a list of all the buttons associated with the palette that are in their correct
location. Click on any one of them to see the picture. The user is given an
opportunity to remove the picture. When you click on the Remove button, a
picture is not actually simply trashed. The picture file that is no longer
needed will show up in a DeletesPalettePictures folder on the Desktop. You
can then decide what its ultimate fate should be. I do not want the user to
lose carelessly a picture that they actually want.

Any picture on the computer can be selected using the Select Picture To
Add button. If it is the correct size and has an appropriate name, it can be
added to the button pictures that belong to this palette.

The yellow area in the bottom third is only informative. It lists ALL the
pictures in the ButtonPicture folder. These live in the corresponding
subfolders within the ButtonPicture folder. There is also a list of pictures
that were automatically removed from the ButtonPicture folder because the
program detected an incorrect name or some such thing. This listing will
generally be empty. Any such picture that is removed automatically in this
fashion will end up in a RemovedFromButtonPictures folder on the
Desktop.

Manage AppleScript

AppleScripts are files that the user creates or obtains from others. The

ScriptEditor app compiles these into .scpt files that can be run. These files
can exist in any location on the Mac, but to be addressed by the
ASK_Palette program, they need to live in a specific folder, Apple_Scripts
which is a subfolder of net.bearboat.ASK-Palette. The full path is:

/Users/UserName/Library/Application Support/net.bearboat.ASK-Palette/
Apple_Scripts.

When configuring a palette, buttons that are to initiate AppleScripts are
associated with the name of the AppleScript file. In order for this to work,
the file has to be in the proper location. While it is possible for an
experienced Mac user to place the file using the Finder, it is better to take
advantage of the Window that appears when you go to the menu item,
Manage AppleScript, under the Configure menu.

In this window, on the left is a list of all the AppleScripts that exist in the
relevant folder. If an item is highlighted in orange it means that at this time
no palette button actually references this script. There is a button, Add
Script to Apple_Scripts Folder that allows the user to choose any
AppleScript on the computer and add it to this special folder.

To edit an AppleScript that lives in this folder, it is best to move it into a
folder on the Desktop called AppleScriptWorkshop. Here you can open the
script with the ScriptEditor and make any necessary changes. You will see
it listed in the middle of the window as currently residing in the
AppleScriptWorkshop. Once any necessary corrections have been made, it
can be returned to the Apple_Script folder — Move to Apple_Scripts Folder
button.

On the right side of the window is another list which contains all the
palette buttons that have been associated with an AppleScript name. If the
name is not presently associated with any script in the Apple_Scripts folder,
it will be highlighted in purple. 

Rename Palette Alias…

This is a menu item under the Configure menu that offers an

opportunity to rename the current palette. The most definitive name that a
palette has is its name ID of the form P00 or P01 or P02 etc. That is the
name that is used to communicate with Keyboard Maestro. That name is
set in stone. But it is not that friendly a name for a human. Here you can
assign a name that is a little more evocative, and it appears in various
locations like palette listings. It is, as it were, an alias to the P05 style
names. One rule is that it has to be unique.

Delete Palette…

This provides is a way to delete an already constructed palette. This

seems, on the face of it, to be fairly simple. That palette disappears. When
a new palette is created, it will recycle the name (P04, for example) of the
palette that was removed. In this way, you will not “use up” all the available
palette names prematurely. The possible palettes names are restricted to
the 100 names in the range (P00, P01, P02, …, P98, P99). When a palette
is removed, any associated Keyboard Maestro macro will remain. (P04,
for example). You would have to deal with this manually.

Using Your Palettes

One the palettes and their associated windows have been constructed,
you need not bother with the Configure menu item unless something
needs further editing.

In the day-to-day use of the program, the Palette menu allows you to
change what is the currently active palette. Theoretically, you could have up
to 100 different palettes. There are specific menu items allowing you to
directly select one of the first 10 palettes. If you have more than that in your
quiver, you can select the Switch Palette menu item which will bring up a
window to allow you to select any palette you have created.

The Switch Palette window has some automation features. If you type
two digits then it will directly select the corresponding palette. You type “4”
“2” then, if the P42 palette exists, it will immediately come to the fore.

Remember that you can actually use Keyboard Maestro itself to
change the palette of the application App_Palette. That is occasionally
useful. Your own workflow might include moving among different palettes.
For example, a Keyboard Maestro macro with the consecutive actions to
type Command-P and then “4” and “2” would automate bringing up the P42
palette (if it existed). Also when constructing a palette, it is easy to arrange
having one of the buttons change the active palette to some other one.

Designing Button Pictures

In general the goal of creating pictures for your palette buttons is to have
pictures that declare or, at least hint at, the purpose of the particular button.

In this example, both text and an image have been used to convey the purpose of the button

Designing buttons can be done in any graphics program capable of
creating png or jpg images that are 64 points in size.

Sources of images are myriad. Emoji and Apple’s SF_Symbols are one
resource that I use frequently. For the super-creative, you can create you
images from scratch. As mentioned above, I use AffinityDesigner as my
primary graphics program. It is a vector-based program well suited to the
task. (Adobe Illustrator is a well-known app in this genre).

SF Symbols

This is my favorite source/inspiration. It is possible to export as an svg

file which is a vector format that can be easily modified. I will mention here
the steps required using AffinityDesigner. I would assume that other vector
graphics programs would be able to do similar things.

The Apple program, SF Symbols, allows you to choose one of
thousands of images (icons) and export it as an svg file (Export Custom
Symbol Template). You can open the svg file with AffinityDesigner and can
see that icon is provided in various weighs and sizes. Select the one that
you want to start with and open that particular icon in a new
AffinityDesigner document. You will find that the various pieces (perhaps 3
to 9 for these simple graphics) are labeled Curves. To be able to work with
them individually, you need to be able to break them up into the
components. In AffinityDesigner, you select the Curves and then go to
menu item Layer >> Geometry >> Separate curves.

Now you have access to the individual curves with their various controls
points. In this example, the icon is made of four curves (The handle/
structure; the basket; the back wheel; the front wheel). You can be a
creative as you want. Change the color. Apply gradients. Distort the
element. Ultimately, you can export your creation as a 64 point png image
and use for a palette button. Here I have selected and then modified the
basket curve.

Original and Modified

Help

There is lots of help available scattered through the application. These
small graphics can be clicked on to get local help about the application’s
function.

In addition, you may notice that when the cursor lies over many of the
labels, the labels turn a blue color. This is an indication that clicking on the
label will also display some helpful information about its function. Clicking
on the information bar with the Shift-key held down will show some help
information about that UI element.

Much of the content of this manual is provided in bite-sized chunks
within the application. 

Moving Palettes to a Different Computer

There is no syncing mechanism built into the program. All the design
work is saved in a specific location:

~/Library/ApplicationSupport/net.bearboat.App-Palette

That folder (net.bearboat.App-Palette) will contain three things
1. A folder called: ButtonPictures
2. A folder called: Apple_Scripts
3. A file called: PreserveState.txt

ButtonPictures contains folders with names like P00, P01, P02, P03 etc.
Those folders contain the pictures that are associated with each of the
palettes that have been created.

It takes some familiarity with advanced features of the Finder to access
the ~/Library folder. You can Google the topic to learn how. It varies slightly
depending on the macOS version.

If you wanted to duplicate your APP_Palette work on a different
machine, you would have to copy the net.bearboat.App-Palette folder with
its sub-folders and place it into the ApplicationSupport folder of the different
machine. 

Upgrading From KM_GridPalettes

This topic is explained in greater detail in the Miscellaneous Odds and
Ends section at the very end of the manual. It takes some familiarity with
advanced features of the Finder to access the ~/Library/Application
Support folder. You can Google the topic to learn how. It varies slightly
depending on the macOS version.

Run ASK_Palette for the first time and quit. This will assure the
presence of a new folder in the Application Support folder called
net.bearboat.Ask-Palette.

In the Application Support folder would also be living your old
com.bearboat.KM-GridPalettes folder. It should contain a subfolder called
ButtonPictures and a file called PreserveState.txt . Move copies of these
two entities into your new folder, net.bearboat.Ask-Palette.

Now when you start your new program, ASK_Palette, it should now
have ready to go the palettes you created in KM_GridPalettes. 

Final Notes

Click On a Button and Nothing Happens

There are several potential causes for this problem and the program

cannot tell you which one is responsible. Look for the following possibilities.
1. There is no Keyboard Maestro macro whose name corresponds to
the name of the palette on which the button resides. Remember that
every palette has a name ID like P00, P01, or P02. There has to be a
Keyboard Maestro macro that you have created that has this identical
name.

2. The Keyboard Maestro macro is in a Macro Group that the
ASK_Palette and AppleScript programs do not have access to. It is
probably best to create a Group that is Available in all applications
and put all the macros you have written in that Group. Do not restrict
that Macro Group to ASK_Palette! This causes a problem. As a user of
ASK_Palette, it is not obvious that it is actually AppleScript that is
telling the Keyboard Maestro script to run. But the fact is that
ASK_Palette uses AppleScript as an intermediary under the covers.

3. The Keyboard Maestro macro corresponding to the palette is
passed a parameter that refers to the specific button that was pushed.
That needs to be handled in the macro. It will reside in %TriggerValue%
at the start of the script. (See the example above in the manual) Make
sure that your macro makes use of this value. %TriggerValue% is an
unusual name for what accepts the passed parameter, but that is just a
peculiarity of Keyboard Maestro.

4. If the button is associated with an AppleScript, that named
AppleScript has to exist in the expected folder

5. If the button is associated with a Shortcut, that Shortcut has to exist
in the Shortcuts app of the hosting Mac.

6. Nothing else has been specified and the Keyboard Maestro
checkbox is unchecked. You will get a warning in this situation. 

Hints for Macro Design

I have included an actual Keyboard Maestro Macro below to illustrate a
common pattern. First of all, the macro is named for the palette that
controls it (P07). Secondly, information in the form of a string is passed to
the variable %TriggerValue% which contains the name of the button that
invoked the macro. (00, 01, 02 etc).

Using a Switch is a relatively easy way to deal with differentiating the
actions launched by different buttons. Each button is given its own “Case”
and it actions can be placed here easily enough if they are short. You could
also use several If Then Else actions if you preferred. (or some
combination.) If the actions prompted by the various bottoms were
complex, it might make sense to populate the “Cases” with Execute Macro
and then dedicate that macro to the intended Actions of a single button.

Note the last Action of the example. It makes ASK_Palette the foremost
application after the macro has run. It is often convenient to include this last
step. If you want to use shortcuts inside of ASK_Palette, it really makes
sense. For a keyboard shortcut to work, ASK_Palette has to be foremost.
If you end up having to use the mouse to click on the ASK_Palette window
to activate it, the usefulness of the shortcut is diminished.

Fortunately, it is not so important if you are primarily using the mouse to
click on the various buttons in a palette. Even if ASK_Palette is not
foremost, the initial click will invoke the buttons action. This is to say that
you do not have to click first to “activate” ASK_Palette and then click again
to choose a button. A single click will do. In this example the initial action of
each button is to Activate BBEdit program. In many circumstances, this first
step will be Activate Last Application. Remember, when you click on a
button in an ASK_Palette window, a side effect is to make it the foremost
application. 

P07
No triggers specified.
Will execute the following actions:

• Set Variable “whichButton” to Text 
%TriggerValue%  
 

• Comment “P07”  
P00 contains all the actions relating to the P07 palette. When this Keyboard
Maestro Macro is activated, the particular button that was pressed is
passed as a parameter (%TriggerValue%). With this knowledge, the Macro
can decide what to do or possibly pass on the task by activating a specific
Macro associated with the button. 
This palette is for the BBEdit Compare function. Written by Robert
Livingston author of ASK_Palette 
 
 

• Switch of Variable “whichButton”  
If it is “00”, Execute the Following Actions:

• Activate BBEdit 
Notify on failure.

•  

• Pause for .1 Seconds 
Notify on failure.

•  

• Move and Resize Front Window 
To:
(SCREENVISIBLE(Main,Left),SCREENVISIBLE(Main,To
p),

SCREENVISIBLE(Main,Width),SCREENVISIBLE(Main,H
eight)-140)

• Notify on failure.
•  

• Pause for .1 Seconds 
Notify on failure.

•  

• Type the ⌘T Keystroke  
 

• If it is “01”, Execute the Following Actions:
• Display Text Briefly  

Wrap Text 
 

• Activate BBEdit 
Notify on failure.

•  

• Pause for .1 Seconds 
Notify on failure.

•  

• Select Menu Item in BBEdit 
Select: View ⇢ Text Display ⇢ Soft Wrap Text

• Stop macro and notify on failure.
•  

• If it is “02”, Execute the Following Actions:
• Display Text Briefly  

Invisible  

 

• If it is “03”, Execute the Following Actions:
• Activate BBEdit 

Notify on failure.
•  

• Type the ⌘Left Arrow Keystroke  
 

• Pause for .1 Seconds 
Notify on failure.

•  

• Type the Down Arrow Keystroke  
 

• If it is “04”, Execute the Following Actions:
• Activate BBEdit 

Notify on failure.
•  

• Type the ⌘Right Arrow Keystroke  
 

• Pause for .1 Seconds 
Notify on failure.

•  

• Type the Down Arrow Keystroke  
 

• If it is “05”, Execute the Following Actions:

• Activate BBEdit 
Notify on failure.

•  

• Type the Right Arrow Keystroke  
 

• Pause for .1 Seconds 
Notify on failure.

•  

• Type the Down Arrow Keystroke  
 

• If it is “06”, Execute the Following Actions:
• Activate BBEdit 

Notify on failure.
•  

• Type the ⌘Left Arrow Keystroke  
 

• Pause for .1 Seconds 
Notify on failure.

•  

• Type the Down Arrow Keystroke  
 

• If it is “07”, Execute the Following Actions:
• Activate BBEdit 

Notify on failure.

•  

• Type the ⌘Right Arrow Keystroke  
 

• Pause for .1 Seconds 
Notify on failure.

•  

• Type the Down Arrow Keystroke  
 

• If it is “08”, Execute the Following Actions:
• Activate BBEdit 

Notify on failure.
•  

• Pause for .1 Seconds 
Notify on failure.

•  

• Move and Click  
At (0,0) from the center of the found image in all
screens.

• (Unique). Fuzz: 15%
• Stop macro and notify on failure.
•  

• If it is “09”, Execute the Following Actions:
• Activate BBEdit 

Notify on failure.
•  

Written with Xojo

www.xojo.com.
This is a shout out to Xojo. It is a generalized programming environment.

It is particular adept at quickly creating a GIU interface which is not a
strength of other programming tools like Python.

This application grew out of more highly customized apps that I created
in Xojo to deal with specific problems.

AKS_Palette is almost entirely a GUI. The user interacts with the
program only to specify actions that will be performed by Keyboard
Maestro or AppleScript or Shortcuts and the apps that they are, in turn,
directing.

Xojo is a commercial app that requires a license for compiled apps.
However, it is free to explore with non-compiled apps that run within its own
environment. It you are interested in building applications with a quickly and
easily created GUI, it is worth checking out.

Contact

The best way to contact me is email.
Email: rlivingston@me.com
Web: www.bearboat.net.
Any kind of feedback is welcome. If you run into bugs, please tell me,

and I will try to help. Such interactions are also likely to help other users.

http://www.xojo.com
mailto:rlivingston@me.com
http://www.bearboat.net

LICENSE / DISCLAIMER

Copyright (c) 2022 Robert Livingston
Permission to use, copy, modify, and/or distribute this software for any

purpose with or without fee is hereby granted, provided that the above
copyright notice and this permission notice appear in all copies.

THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR
DISCLAIMS ALL WARRANTIES WITH REGARD TO THIS SOFTWARE
INCLUDING ALL IMPLIED WARRANTIES OF MERCHANTABILITY AND
FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY
SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR
ANY DAMAGES WHATSOEVER RESULTING FROM LOSS OF USE,
DATA OR PROFITS, WHETHER IN AN ACTION OF CONTRACT,
NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF OR IN
CONNECTION WITH THE USE OR PERFORMANCE OF THIS
SOFTWARE.

Miscellaneous Odds and Ends 

An Example Palette

The data for an example palette has been provided. As befits an

example, it is simple. A palette of emoji pictures has been created. Clicking
on any of these buttons does essentially the same thing. If you are in a
program capable of accepting an emoji (Mail, TextEdit, Pages), clicking on
one of these buttons merely inserts that emoji into the text.

This palette works through a Keyboard Maestro macro. The macro
basically consists of a large Switch statement.

P18, name name of the macro, is activated by the P18 palette.
ASK_Palette sends which button the user clicked to the macro. You have
to make sure that the name of the palette corresponds to the name of the
macro that it controls.

P18
No triggers specified.
Will execute the following actions:

• Comment “P18”  
P18 contains all the actions relating to the P18 palette. When the Keyboard
Maestro Macro is activated, the particular button that was pressed is
passed as a parameter (%TriggerValue%). With this knowledge, the Macro
can decide what to do or possibly pass on the task by activating another
Macro associated with the button. 
 
 

• Comment “Type Emoji”  
Presumably, you are originally in a program that can accept Emoji. So at the
start of the macro, we return to that program (Activate Last Application). 
 
 

• Activate Last Application 
 

• Comment “Variable whichButton gets assigned”  
When you click on the ASK_Palette %TriggerValue% indicates which button
was clicked by the user. 
 
 

• Set Variable “whichButton” to Text 
%TriggerValue%  
 

• Switch of Variable “whichButton”  
If it is “00”, Execute the Following Actions:

• Insert Text by Typing 
🙂  
 

• If it is “01”, Execute the Following Actions:
• Insert Text by Typing 
🥵  
 

• If it is “02”, Execute the Following Actions:
• Insert Text by Typing 
🤡  
 

• If it is “03”, Execute the Following Actions:
• Insert Text by Typing 
😢  
 

Etc.

Tips for the Button on this Palette

00 Slight Smile
01 Hot
02 Clown
03 Sad But Relieved
04 Woozy
05 Thinking
06 Grinning
07 Cold
08 Zany
09 Lying
10 See No Evil
11 Hear No Evil
12 Speak No Evil
13 Explosion
14 Tennis
15 Full Moon
16 Birthday Cake
17 Unicorn
18 Frog
19 Water Pistol

Practice by Making this Palette

To make this palette, open the ASK_Palette application and go to the
Configure menu and select New Palette…. Give it a Name/Alias -
something like Type Emoji. Make note of the true name of the palette you
have created. It will be of the form Pdigitdigit. Let’s say that it is P07. This is
important, because the name of the Keyboard Maestro macro that it
controls has to be also P07. The name of the macro provided for this
example, P18, has to be changed to whatever name was assigned to the
palette that you are creating.

Now go back to the Configure menu and select Grid Construct. A
window will open up with the tools to define your palette. The first thing to
do is to specify that you want 2 rows and 10 columns. The active buttons
will show up on the grid.

Now click on the individual grid elements. The first one is (00). Activate it
and you will be able to assign it a Tip. The appropriate text for the tips has
been provided above. The Tip for the first button is Slight Smile. Accept
your edit with the OK button and then activate the second grid element
(01). Fill in Hot for its Tip. The activate the third grid element (02). Supply
Clown for its Tip.

Continue this process until all 20 buttons have been assigned the
appropriate Tip text. At this point, click on the Done button in the lower right
corner and you will see your palette. It will not have any pictures, but it will
function if there is an active Keyboard Maestro macro that has the name
of the palette (Pdigitdigit) and the content of the macro is as has been
provided with this example.

Now let's get pictures on the buttons. A folder of 64 pixel images has
been provided with this example called Sample ButtonPictures. Go to the
Configure menu and select Button Pictures. Click on the button, Select
Picture To Add, and navigate to the folder of Sample ButtonPictures that
has been provided with this example. One by one select these pictures and
add them to the palette.

Once this process is complete, you will have a working palette with
decorative pictures on the palette buttons. Make sure that the Keyboard
Maestro engine is active and that there is a macro called P07. Fire up an
application (like TextEdit) that accepts emoji and you can use your palette
and see it working. 

Upgrading from KM_GridPalettes

A few of you may be migrating from KM_GridPalettes which is an

earlier version of the ASK_Palette application. You can replace your use of
KMGrid_Palettes with ASK_Palette if you proceed with the following
steps. This requires enough comfort in your use of the Finder to open up
the Library folder and retrieve and place files there.

The Library folder on your Mac contains a folder called Application
Support. This folder contains files that are used by the various applications
on your computer and you should be careful not to disturb these files which
in general are not intended to be directly accessed by users.

The Application Support folder can contain two folders relevant to this
discussion.

The first is com.bearboat.KM-GridPalettes and the second is
com.bearboat.ASK-Palette. These folders contain all the relevant data for
KM_GridPalettes and ASK_Palette. To upgrade to using ASK_Palette,
without losing all the work that you previously did in KM_GridPalettes, you
copy files that exist in the KM_GridPalettes folder to ASK-Palette folder.

Instructions

1. Run the ASK_Palette program for the first time and immediately quit
the program. This will take care of creating the com.bearboat.ASK-
Palette folder in the Application Support folder. Within this folder, an
empty folder called ButtonPictures and a text file called
PreserveState.txt will have been created.

2. Go to the Application Support folder. To discourage inadvertent
mucking around in this area, Apple makes accessing the Library folder
slightly tricky. When in the Finder, go to the Go menu. You will see a list
of destination folders that you might be interested in accessing. The
Library folder will not be one of them. However, if you hold down the

Option Key, then Library will appear. So hold down the Option Key and
select Library.

3. That will take you to the Library folder and you can see all its
subfolders. The one that you are interested in is Application Support.
Open that folder and look for com.bearboat.KM-GridPalettes and
com.bearboat.ASK_Palette. Copy the ButtonPictures folder in the
com.bearboat.KM-GridPalettes folder to the com.bearboat.ASK_Palette
folder. This will replace the empty ButtonPictures folder that is already
there. Then copy the file PreserveState.txt from the com.bearboat.KM-
GridPalettes folder and place it in the com.bearboat.ASK_Palette folder.
Replace the PreserveState.txt that is has already been created in the
com.bearboat.ASK_Palette folder when you ran the program for the
first time.

4. Now close all these Finder windows making sure that you do not
disturb the other files and folders that live in the Library folder.

5. Open the ASK_Palette application and it should now contain all the
palettes that you made while running its predecessor program
KM_GridPalettes. 

Backup

The Application Support folder for ASK_Palette (net.bearboat.ASK-

Palette) contains most of the data that accumulates as palettes are
designed. The full path is /Users/UserName/Library/Application Support/
net.bearboat.ASK-Palette. This data should be backed up by whatever
system you use to backup your computer.

The folder net.bearboat.ASK-Palette contains a text file,
PreserveState.txt and three folders: Apple_Scripts, ButtonPictures and
EmergencyPreserveStateBU. While net.bearboat.ASK-Palette contains
most of the work that has been put into your palettes, remember that any
macros that you have written for Keyboard Maestro also represents a
piece of your overall commitment.

All the AppleScripts that you have written for ASK_Palette live in the
folder Apple_Scripts. At the time you created these scripts, you can arrange
to keep another copy somewhere else. Similarly, all the pictures you have
designed are stored in ButtonPictures, but again you can arrange to keep a
copy of these pictures elsewhere.

The menu Help has a menu item Palette Data to Desktop that makes a
copy of all the pictures of the currently active palette and a description of all
the buttons on the palette and places them on the Desktop.

The menu Help has a menu item Manage PreserveState Backup which
can create a backup of the file PreserveState.txt or restore
PreserveState.txt from some earlier backup. Backup files for
PreserveState.txt are named with a prepended date time stamp. They are
named: YYMMDD_HHSSPreserveStateBU.txt. (example
230523_1955PreserveStateBU). If you specifically do a backup via this
menu item, it will create the YYMMDD_HHSSPreserveStateBU.txt file on
the Desktop. The user can store it any place they might desire. If you wish
to restore PreserveState.txt, this menu item will allow you to navigate using
the Finder to any file that you want to use as the source to restore
PreserveState.txt. It should be noted that the folder
EmergencyPreserveStateBU contains backup copies that are automatically
intermittently created. Any of these can be used to restore
PreserveState.txt should the need arise. Before trying to access one of
these copies in the EmergencyPreserveStateBU, it should be placed in an

accessible location (like the Desktop). Files in the Library folder and its
subfolders cannot be accessed from this location within the ASK_Palette
program itself. Navigate to the Library folder in the Finder first to pull out
the backup file and place it into an accessible location.

It is doubtful that a user will ever need to use Manage PreserveState
Backup. It is available for those with high level of anxiety about backups or
if some unusual crash causes damage to the existing PreserveState.txt file.

Moving Work To Another Computer

It may arise that you want to move your work in ASK_Palette to another

computer. For example, if you have created many palettes in ASK_Palette
on your desktop machine, you might decide that you would like the same
functionality on your portable machine.

Under the Help menu, there is a menu item, Copy For Another
Computer, that can assist with this task. What this does is create a copy of
the folder that contains the information on all the palettes on the original
machine and places this folder copy in a subfolder on the Desktop so it is
readily available to transfer to the second machine.

Once you have this folder, net.bearboat.ASK-Palette, you have to place
it in the correct location on the destination computer. This is done by
placing this folder and its contents inside the Application Support folder that
lives in the Library folder of the destination computer.

The path to the Application Support folder is: /Users/UserName/Library/
Application Support. It is slightly tricky to get to this folder. Apple does not
encourage users playing around in this part of the folder structure. To get
here, look at the menu items of the Go menu of the Finder on the
destination computer. if you hold down the Option key, you will see in the
menu items, Library. You can then navigate to the subfolder of Library
which is called Application Support. Here is where you should place the
net.bearboat.ASK-Palette folder that was copied to the Desktop subfolder
of the originating computer.

Now these maneuvers do not deal with the setup of Keyboard Maestro
on the destination computer. If you wish ASK_Palette to behave correctly
on the new machine, you are responsible for creating or copying the
Keyboard Maestro macros that you created on the original machine to
actually perform the tasks that ASK_Palette is requesting on the
destination computer. This also applies to any Shortcuts that you may have
created on the original computer that are activated by ASK_Palette. They
need to be brought over to the destination computer.

	History
	Description
	Link to Keyboard Maestro
	Link to AppleScript or Shortcuts
	Palette Switching
	ASK_Palette Functionality
	Configuring Your Palettes
	Using Your Palettes
	Designing Button Pictures
	Help
	Moving Palettes to a Different Computer
	Upgrading From KM_GridPalettes
	Final Notes
	Tips for the Button on this Palette
	Instructions

